Get a multimeter! Those 15cent displays are awful. Many fellas use a plug in timer to charge at lower than 100%.So all this means I should never charge to 100% if I really care about battery longevity?
Most of e-bike owners probably don’t have a charger showing %. By reading the 5 leds on my battery I can probably tell I’ve reached 80% but during the time the 5th led is flashing I don’t really know when I’m close to 100%.
Settling for just over 80% would save me a lot of charging time though as the last 20 seems to take unproportionally long time
So all this means I should never charge to 100% if I really care about battery longevity?
Most of e-bike owners probably don’t have a charger showing %. By reading the 5 leds on my battery I can probably tell I’ve reached 80% but during the time the 5th led is flashing I don’t really know when I’m close to 100%.
Settling for just over 80% would save me a lot of charging time though as the last 20 seems to take unproportionally long time
Good advice... I just checked my 48v battery and it was 53.8 volts. I purposely took a short ride last night to shave some voltage off. Question is ... do I go for the 80% of 48 volts or 80 % of what the charger will bring it up to ~54v ? Please help this confused old man. ThanksGet a multimeter! Those 15cent displays are awful. Many fellas use a plug in timer to charge at lower than 100%.
Here's a chart that shows ~ charging voltage for a given percent.Good advice... I just checked my 48v battery and it was 53.8 volts. I purposely took a short ride last night to shave some voltage off. Question is ... do I go for the 80% of 48 volts or 80 % of what the charger will bring it up to ~54v ? Please help this confused old man. Thanks
Thanks for the chart....I forgot about the "fuzzy" math of electricity. Printed and posted. Thanks again?Here's a chart that shows ~ charging voltage for a given percent.
From what I have read it is 90% of the usable voltage. I have this written down but not accessible at the moment. But I have found a very good correlation on my bike. I know the range is generally 50 miles and so when I ride for 5 miles it surprisingly correlated with the proper battery level.Here's a chart that shows ~ charging voltage for a given percent.
I’m sure Bosch fellas here can confirm the sophistication of their BMS. It makes sense it would balance but 20%-80% charges would still be valuable.I tend to do much of what has been said in previous posts, i.e., rarely let the battery get below 20%, alternate charging between 80-100%, never fully charging and then let the battery sit for days/weeks at full charge. On the latter, if I'm on a cycle where I charged to 100% and for some reason I cannot get out to ride the next day as planned, I actually turn on the lights to just run the battery down a bit.
But I'm wondering if we're all killing ourselves to do what the BMS might be doing for us. It knows the actual health of each cell and the balance across the cells. It could tell us it's charging to 100% and only charge to 95%, or tell us were at 5% while the cells are actually at 15%. And the algorithm could adapt as the cells age. I have the Bosch system which supposedly has a pretty sophisticated BMS. Sometimes I think I worry way too much about the battery.
So all this means I should never charge to 100% if I really care about battery longevity?
Most of e-bike owners probably don’t have a charger showing %. By reading the 5 leds on my battery I can probably tell I’ve reached 80% but during the time the 5th led is flashing I don’t really know when I’m close to 100%.
Settling for just over 80% would save me a lot of charging time though as the last 20 seems to take unproportionally long time
I tried to get my Specialized Vado 4.0 with the largest battery, 604Wh, but was told that there was no option to upgrade a new bike from the 504Wh. I mean I was of course willing to pay for the upgrade. Only option is to buy a new 604Wh battery for the insignificant cost of $900.These battery issues and gotchas drive me crazy. It's already a bit of a challenge to figure out what one's accurate range is on an ebike (at least it is for me because it's variable). Then, on top of that, having to worry about the battery being charged but "not too charged." It actually makes the case for the need to have a 2nd battery, which can be an expensive proposition -or- decrease one's estimated mileage to make sure one never goes below 20%. Then, try to figure out how not to ever go above 80% when charging.
More trouble than it's worth? Just start a battery replacement fund from day #1 of ebike ownership and expect to purchase a new replacement battery in 2 years? Bite the bullet and start off with 2 batteries from the get-go and meticulously keep the battery charge in that magical 30% to 80% power range at all times, which you'd at least get the "full expected range" stated from 1 battery.
I say it's frustrating.
Overthinking, one poorly managed but well made battery in 5th season. Sags but does just fine with PAS under 20MPH.These battery issues and gotchas drive me crazy. It's already a bit of a challenge to figure out what one's accurate range is on an ebike (at least it is for me because it's variable). Then, on top of that, having to worry about the battery being charged but "not too charged." It actually makes the case for the need to have a 2nd battery, which can be an expensive proposition -or- decrease one's estimated mileage to make sure one never goes below 20%. Then, try to figure out how not to ever go above 80% when charging.
More trouble than it's worth? Just start a battery replacement fund from day #1 of ebike ownership and expect to purchase a new replacement battery in 2 years? Bite the bullet and start off with 2 batteries from the get-go and meticulously keep the battery charge in that magical 30% to 80% power range at all times, which you'd at least get the "full expected range" stated from 1 battery.
I say it's frustrating.
Most ebikes use instant current to "guesstimate" the remaining charge. They don't keep a track of watt-hours of spent energy. You slow down and the gauge goes up. Don't know whether calibrating it at the beginning by charging 100% and discharging to 5% (or whenever BMS will shut down) - don't know if this will have any effect on guesstimation work of an average ebike display.There is no memory and the battery does not need periodic full discharge cycles to prolong life. The exception may be a periodic calibration of the fuel gauge on a smart battery or intelligent device. (See BU-603: How to Calibrate a “Smart” Battery) "
Clearly, this shows that it is more important to guard against deep discharges than full charges and it can be a double-edged sword if you focus only on the top end of the charging cycle.